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l. INTRODUCTION: In a variety of statistical experiments, notably those

connected with clinical trials and life tests, the observable variables are
time-ordered and consequently recorded in the order of increasing size.
Specifically if xl,...,xn (n > 1) denote the survival times of n speci-
mens under a life test then in the typical situation encountered in practice
the observable random variables correspond to the ordered sample xn’l,...,xn’n
based on xl,...,xn rather than on the survival times themselves. Now a
complete collection of the data calls for the monitoring of the experiment
until the last observation xn,n is recorded. However, ethical considera-
tions and limitations on time and cost often demand curtailment of experimen-
tation before all the specimens under study have responded and so, in practice,
experimentation may be terminated after a prespecified proportion of units

have responded (censoring) or alternatively after the investigation has been

monitored for a prespecified length of time (truncation). These sampling

procedures themselves lack certain elegancies stemming from cost and efficiency
considerations. For example, a too early truncation typically increases the
risk of erroneous decision whereas in the censoring scheme the randomness of
the time of termination of experimentation could be at variance with restric-
tions on time and cost. For these reasons it is generally desirable to monitor
the experiment from the onset and continuously update the data so that at

any stage of the experiment if the current evidence warrants a clear statis-
tical decision the experiment can be terminated at that stage with the adoption

of the appropriate decision which the current accumulated cvidence indicates.

Such sampling schemes are called Progressively Censored Schemes (PCS) and in
our formulation they lead naturally to the consideration of a broad class of

stopping variables {1“; n 2 1}, where for each n 21, T is defined in

terms of the observables X I ¢ .
n,1 n,n

L




The purpose of this note is to develop an invariance principle for pro-
gressively censored likelihood ratio processes valid for a class of survival s
distributions in which the hazard rate function is separable in its variables.

Whereas in Sen (1976) and Gardiner (1978) weak convergence results have been
derived for the general case, in the present situation an immensely simplified
analysis can be presented under fewer regularity conditions using simple clas-
sical techniques.

Along with the preliminary notions the main results are formulated in
Section 2. Section 3 deals with the proofs of the theorems and Section 4 is

devoted to some general remarks and extensions.

2. Preliminary notions and the main theorems. Let {Xi; i 21} be a sequence
of independent and identically distributed random variables (iidrv) whose

distribution vy on the Borel line (R,B) depends on a parameter 6, 6 ¢ © < R,

Assume O to be an open interval of R. We suppose the family of measures
{ve :+ 0 ¢ 0} is dominated by Lebesgue measure u on (R,B) and write

fe(-) = dvb/du for a version of the probability density function (pdf) and
Fe(-) for the corresponding distribution function (df), which is then

continuous. Let (R Bj)’ j 21 be copies of the Borel line and set (X,A) =

jl
"j=1(Rj’Bj) with Pe denoting the product measure of the Vg induced on A.

Ee will denote the expectation evaluated with respect to Pe.

Following the usual terminology we define the survival function Ge by

(2.1) Ge(x) =1 ~ Fe(x)

and the hazard rate function (force of mortality, intensity rate) r by

(2.2) re(x) = fo(x)/Ge(x). . ‘:
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We sﬁppose fe(x) >0 for every Xxe¢ R and 6 € O so that re(x) >0
whenever O < Fe(x) < 1. 1In this note we shall confine attention to distri-

butions for which re(x) can be expressed as
(2.3) re(X) = h(x)/Q(e)

where h and Q are respectively functions of x and 6 only. The class

of univariate densities fe satisfying (2.3) form a subclass of the exponential

family. We require h to be yu integrable over each interval [a,b], a,b € R
and Q to be continuously differentiable on 5; the closure of 0 in R.
In the typical situation encountered in life testing and clinical trials

the observable random variables are the order statistics Zl < 22 < 4.e < Zn

corresponding to xl""’xn' We denote by
(0)

(2.4) 2% = (2,020, 15k 5 zZy =2 =0

and write B for the o-field generated by Z(k), l<ks<n. B is the
n,k = n,0

trivial o-field. We also consider a class of stopping variables T , n 21

n
such that for each n, Th is adapted to the o-fields {Bn : 1<k <n}.
y

k
. (k) |,
Now for every k, 1 € k £ n, the joint pdf of 2 is
(2.5) I ) = {0l/(n - ©LE £ (206, (2,07
. Pglz *liE1te % e 5k
defined on the domain {g(k) : - < z, <...< z, < o}, TFix 60 in 0 and
for a sequence {en} in © of the form FocesslonTor
L NTIS GRAXI
(2.6) 6 =06_+un 5, ueRr DDC TAB
n 0
Unannounced
Justification
we define for each k, 1 £ k = n
By,
Distribut
(2.7) AL () =By (z(k),n)/pe A stributdon/
s n 0 dvailed2itty Codes
Avalland/ox

Dist special

A
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Note that An (u) reduces to the classical likelihood ratio statistic

n
igl{fen(xi)/feo(xi)} for the iid sequence xl....,xn and parameters 90 and

en. We are here concerned with the 'stopped" statistics An < where A . =
14 4
n n

An Kk when Tn = k. We shall develop an invariance principle for the process
b

u-> A c (u). To formulate this precisely let us write © = (a,b), where

’"n
-2 <a<bs+w, a = n%(a - 90), bn = n%(b - 90), and define An,rn(U) by
(Tn) (Tn)
(2.8) An,r (u) = Py (Z ,n)/pe (z ,n), if u € (an,bn)

n n 0

2
= (u - a + 1) 1\n . (an), if ue (an - l,an] pa > -

>’n

=0 » 1f u<a -1, a >-=
n n

and similarly for u e [b ,b + 1) and u>b_ +1 if b < +=. Then

An . has sample paths in C(R) — the space of all real-valued continuous
14
n

functions on R. We endow C(R) with the topology of uniform convergence

on compacta. Then C(R) is a complete separable metric space.

Define the sequence

_ 9 (k)
(2.9) En’k = 29 (lOg pe(Z‘, ,n))’ k=1,...,n. E-n’o =0
and write
(2.10) J (0) = E {52 }.
n,t 8 °n,T
n n

Introduce the sequence of functions {kn(-;e); n 21} on [0,1] by
(2.11) kn(t;e) = [tEe(Tn)J,

where [x] denotes the greatest integer < x. Then the kn may assume only
the integer values O0,...,n. Finally for fixed 8 we define a process

w = {W
n

n,t
*n ’

. (£50) : t ¢ (0,11} by
n




]
n,T = €n.kn(t;e)/Jn,Tn(e)'

(2.12) W (t;0)
T

This process has sample paths in D[0,1] -~ the space of all real valued
right continuous functions on [0,1] with left hand limits. Equip D[0,1]

with the usual Skorohod topology. Write

(2.13) A(u) = exp{uJ%(e e - %uzJ (6,)}, ueR
a0 a0’ "?

where [ 1is a standard Gaussian variable and

(2.14) 3 (0 = a(Q'(6)/Q(8))%, 6 € 0, o € (0,17.

Theorem 1. With the assumptions made above and 6 fixed in ©, whenever

~~ 8 6’

rflrn—+a € (0,11 in P-probability and Q'(8) # 0, then under P

(2.15) W - W in D[O,1],
n,T w ~~

where W = {W(t) : t ¢ [0,1]} is a standard Wiener process in D[O0,1].

Theorem 2. With the assumptions made above, whenever n_lrn +a € (0,11 4in

P, -probability and Q'(6,) # O, then under P_,
90 ey 0 90

(2.16) A“"n A in C(®)

where the process A is defined in (2.13).

Even though the limiting process A in Theorem 2 has sample paths in
CO(R) -- the space of all real valued continuous functions on R vanishing

at *o -~ the processes A may not have paths in this space unless 0O

*'n

is a bounded set. We define for each ¢ >0,

(2.17) Agfiﬂ(u) = An,Tn(U)’ if ue (an’bn) n (-en%, en%)

and extend the definition of Asaz (u) to all of R in exactly the same way
1]
n
as in (2.8). Then Asri has trajectorics in CO(R). Note that the processes

’
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A(E)

n,t and An,

n n
with the uniform metric topology.

are essentially the same if O 1is bounded. Equip CO(R)

Theorem 3. With the assumptions made above, if Hirn+ a e (0,11 in Py -
0
probability, Q'(eo) # 0 and either

(a) Pe (Tn 2 [n6]) =1, for some 0 < § € a, all n 21
0

2

or (b) Pe (ﬂdkn< a —-68) <A 6“, for some A<« and 0 <§ <a, all n 21,

0

then for each e > 0,

(e) .
(2.18) Anxfn » A in Cy(R),

under the probability measure Pe .
Q

3. Proofs of Theorems. The conditional pdf of Zi given Bn i-1 is
’

. _ n-i n~i+l
(3.1) qa(Zan,i-l) = (n -1+ Df ({6 ()1 /{6 (z; 1)}
defined for z > Zi-l' In view of (2.2) and (2.3) we then have for each 1,
l<si<n
Z
-1 -1 i
(3.2) q.(z./B . ) = (n-i+1)h(Z,)Q ~(8)exp(-(n-i+l)Q ~(0) h(x)dp).
671" "m,i-1 i _ z
i-1
Define the random variables YO,Yl,...,Yn, n 20 as follows.
Z,
i
(3.3) Yo = 0, Yi = (n—i+l)J hduy, i = 1,...,n.
Z,
i-1
Then it follows from (3.2) that the Yi's are iidrv's with the simple expo-
nential distribution and
2
(3.4) Eg(Y,) = Q(6), Var (Y;) = Q7(8), 1 =1,...,n.

Now from (2.5) and (3.1) one obtains for each k, 1 < k < n i




k
(3.5) pe(g(k),n) = ;19,02 IB 1—1)’

and therefore from (2.9) we get for any k, 1 sk £ n

k =%
(3.6) bk T iE1bn, 1
where g* -2 (logq, (2 IB M, di=1 n
n,i 38 6 “i'"n,i-1""" yemeate

Hence from (3.2) and (3.3), this gives us

* Q' (8)

30 (108Q(8)) + 380

2()1

gifg;r - Q8)).

(3.7

Employing (3.4) and the relation in (3.6) it also follows directly that

L 22 ' 2
- - [2€8)
(3.8) Jn,rn(e) Ee(ig (En 1|Bn,i—1)) (;(6) ) Ee(Tn)'
Therefore combining (2.12), (3.7) and (3.8) the process wn T reduces to
[tEg(t )] n
-y n
(3.9) Ho,e (530 = (Bg(EDI™F 3y (1) - Q(@)/a(o).

Note that we are holding © fixed in 0. Since n_lrn +a in Pe—probability,

by assumption, we have n—lEe(Tn) »+ . Then since the (Yi - Q(8))/Q(8) are
iid variables with zero mean and variance unity we obtain the desired result
(2.15) by an application of Donsker's Theorem. (See Billingsley (1968)).
Observe that

)

T (G0 1B 5
)

3.10 A - n |2
(-1 nr, M Tl 1 ;18
0 9

where en, 60 € 0 and en is given by (2.6). Assume for the moment 0 = R,

i.e. a=-», b = 4=, Now for each i, 1 £ i £ n we have from (3.2)

atimana
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(3.11)

% 180,10 e (é(en> - Q)
= exp Y
AL APETRON CIGRITCIVIN Rt

and therefore

Q(en) - Q(BO) Tn

(3.12) 1°g"n,rn‘“) - e (£, (Y, - Qe hhce)
Q8 ) - Q(8,) Q(e.)
n 0” _ n
* Th ( Q) Log Q(OO)) :

%

- * * -4
But Q(en) = Q(eo) +un "Q'(6) where |en-90| < |u/n"™? and furthermore

by the continuity of Q and Q'
- * * 1
(3.13) Q(6 ) + Q(6,), Q'(8)) > Q' (o).

Hence the first term on the right hand side of (3.12) can be rewritten

b

n

- T
(3.14) un (@' (6 /(e )} £, (¥, - Qlag))/ats)-

Again, since rrlT +a € (0,11 in P, -probability and the (Y, - Q(8,))/Q(8,)
n 90 i 0 0

are iidrv's with mean zero and unit variance it follows that, under the

probability measure Pe
0
-1 -4 ™

(3.15) g o=a 0 B (Y, - Q(6,))/Q8,) T,

where ¢ 1is a standard normal variable. So in view of (2.14), (3.13) and

1
(3.15) the entity in (3.14) converges weakly (under Pe ) to uJ:(Oo)c.
0
To analyze the second term on the right hand side of (3.12) we proceed

}

- *
as follows. Let xn(u) = un Q'(Bn)/Q(eo). Now




ey - ey
qCe.) Qo)

-1
xn(l + xn) - log(1l + xn)

]

-1 1.2 L2
xn(l + xn) X + X (log(l + xn) x + ﬁxn)

2 -1
-1 - -
' (L+x) "(1-x)-g, where

(3.16) g, = 8 (W) = log(1 + x ()~ x (W) + x-(u).

From (3.13) and the definition of xn(u) we have at once xn(u) + 0 for

each u € R. Furthermore from the elementary inequalities

(3.17) x/3(L + %) < log(l + x) - x + %2 < 073, x > -1

we also have that ngn(u) -+ 0 for each u ¢ R. Therefore since n Tn > a

in Pe —-probability we get
0

ato,) - Q(e,) Q(s.) Y
(3.18) T Q(en) - log Q(eo) = -Lu Ja(eo) + op(l)
and thus we have shown
(3.19) logAn . (u) > {UJE(GO)C - %UZJQ(GO)} = loghA(u)

n
for each fixed u ¢ R. Of course when ©@ = (a,b), a,b finite (3.19) continues

to hold for the process A defined in (2.8). It also follows from (3.19)
b
n
that the finite dimensional distributions of the process An < converge
3

weakly to those of A. Therefore to complete the proof of Theorem 2 we need

only verify that An . is tight. To demonstrate this it suffices to show
b

n
that for any L > 0
1 1
. * _ B 2 _ 2
(3.20) Ee (An,r (ul) An,T (UZ)) - K(ul u2) ’
0 n n
for all upsu, < {-L,L] and some constant K > 0 not depending on upsl,
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or n. However, since E_ (A (u)=1 for ue (a ,b) and in view of
00 n, T, n n
(2.8) we need verify (3.20) for arbitrary upsu, € (an,bn) n [-L,L]. Now
for upsly, with u, < uy
1 2 n L ‘ k 2
G.21) E, (AL (u) ~ A% wn?= o @ - p ®a e
] n’T 1 n,T 2 k=1 _ 0 ~ 0 k
0 n n [Tn—k] n,l n,2
. . k - s
where w is Lebesque measure in R and en’i = 60 + uin , 1 =1,2.
Further for each k, 1 < k < n, by the Schwarz inequality
k L k 2
(3.22) J (p;§ (g( ),n) - pg (5( ), 0) du, =
[t =k] n,1 n,2
n
en,l 3p6 2y 9
J du, J % 55~ Py du(0)
(1t =kl 8
n a,2
(en’l -1 Dpe 2
< 1/4(0 -8 1 J du(e)I p (— du, | .
; 90 k
n,1 n, 2 0 [t =k] S i
n, 2 n

Therefore, since Q'(8)/Q(0) is bounded on O we have from (3.8) and (3.22)
that the right hand side of (3.21) is dominated by Kz(ul - u2)2/4, where
K = sup(Q'(6)/Q(0)). This completes the proof of Theorem 2.

From our analysis of the process An we also find that for each
' n (e)
€ >0 the finite dimensional distributions of the process A~

3

converge

n

weakly under Pe to the corresponding finite dimensional distributions of
0

A. Thus once again we are left with verifying the tightness of A(C)

n, T,

CO(R). To this end we follow Ibragimov and Khas'minskii (1972,1975) and

in

establish two preliminary lemmata.

Lemma 1. For each 0 € O, n > 1

n
(3.23) J
[

oo (k) o s (k) _h 2
Kk . G’om(é ) = pglz ’“)) iy =g Jp,¢ (0 + o(h))
Tﬁf&] n

e e s d e
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Proof. Write M(h) for the expression on the left hand side of (3.23).
Following the usual argument as in (3.22) we have

h r6+h
M(h) < zj 3¢ (©)du(e).
0 n

and so from (3.8) we arrive at

Tim b 2M(h) < 1/43  (8).
h>0 T

To obtain the reverse inequality we use Fatou's lemma.

) ap.\ 2

lim -2 n -1 °Pg -

hoo b Mb) = kélj[ _M4pg (ae dw, = 1743, (),
Tn—k] X n

and hence (3.23) is proven.

Lemma 2. Under the conditions placed on the sequence {Tn} in Theorem 3,

for any K > 0 there exists constants c,,cC

1 > 0 and an integer n, 21

2 0

such that

2
(3.24) Peo[l\n’rn(u) > exp(-c u’)] < ¢ exp(-c u’)

1
whenever |u| < Kn/i and n 2 no.

Proof. In view of (2.8) we may confine attention to u € (a ,b ). Now

e

2 2
P [An,Tn(u) > exp(-cju”) ] < exp(lc u o, where ¢ =Eg

b
(A (u)). Since
n,T

0 0 M
E. (A (u)) =1 we have from Lemma 1

0 n,T

0 n

B 2 -1 2
(3.25) o, 1-1/8u"n Jn’Tn(OO) + o(u“/n).
Now n_lJ (¢) »J (®) as n >« and so for some integer n, 2 1,
n,T 0 a 0 0

_ *

n lJ (6.) > %1 (0.) whenever > n.. Also there exists K > 0,
n,7T 0 o 0 0

n
*
2/n)l < (u2/32)Ju(60)’ whenever Iul < K n%.

1
"2

sufficiently small such that |o(u

%
Hence for any u satisfying |u| < Kn with n = nO we obtain from (3.25)
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2 J (8,
G s (-2 T (6)s exp(- 22 ud)

and so (3.24) follows by choosing c, = 1 and < > 0 appropriately.

* L
Suppose K n? < ]ul < Kn%, with K > 0 arbitrary. Note that
1
{A:,k’Bn,k}:=1 is a nonnegative supermartingale under Peo so that under
condition (a) of Theorem 3, viz T > [nd] a.s. (Pe ) for some C <6 < a,
0
we get
= !5 l/2 — _lf [ns]
(3.26) e Ee (An,r I(rn 2 [né])) < Ee (An,[né]) = (p(un %))
0 n 0
where ©(x) = 2/Q(90)Q(90 + xka(eo) + Q(e0 + %x)). Since ¢ is continuous in
x and (x) < 1 whenever x # 0 we have Y5 = sup . @o(x) < 1 and therefore

x € [K,K]

2
) 8
o = exp(—[nG]Ilogqbl) < exp(- §;§]108¢b|),

for all n sufficiently large and again (3.24) follows. Finally if condition

(b) of Theorem 3 holds, we obtain

I I, 2 InGa - YD) + B (Aif’T I(t /n - a< = 8))
0 n 0 n

[n(a=6)1 n/2

(3.27) < (;p(un"l”“)) + AS

A

2 2
exp(~ E-{(%—ﬁllog¢ol) + A exp(- 92—211086[),
K K

for large enough n and this leads us to (3.24). This completes the proof
of the lemma.

The remainder of the proof follows Ibragimov and Khasminskii (1972).
]

In view of (3.20) and Lemma 2, for any € > 0 and 0< & < gn

1 1
(3.28) P [ sup I A% (u)] > n1/4y < on?
0T 2

60 ‘ul-u2]<h Rl
Jughes

(“1) -

for some constant ¢ > 0, and for arbitrary n > 0, there exists a > 0,




such that

(3.29) lim Po [ sup !sl\!i (u >nl =0
n 0 a<[u]<en M in

Then the tightness of Agei in CO(R) follows from (3.28) and (3.29).

4. Some Remarks and Examples: (a) The one-parameter processes An T and
>
n

A(5)
.

of Theorem 2 and 3 are those usually encountered in practice. For
the sake of completeness however, we mention here briefly the two-parameter

process {A (u; t ¢ [0,1], u € R}, defined in the usual way for

n,kn(t;eo)

u € (an bn) and set constant (> 0) otherwise, keeping the sample paths
’

continuous in wu. Note that throughout eo is held fixed in ©O. With these

definitions it is not too difficult to see that the finite dimensional dis-

tributions of the process An T converge weakly under Pe to those of
H n 0

the process A = {A(u,t):t e [0,1], u € R} where

Au,t) = exp{qu(Oo)W(t) - %utha(eo)}.

~

In order to obtain the weak convergence of the entire process An,r we need
to proceed further. We shall provide an outline here. Consider the space

D = D([0,1] xR) of all real valued functions on [0,1] XR which are continuous
from above with limits from below in the sense explained in Neuhaus (1971) or

Bickel and Wichura (1971). For each j =2 1 set =D([0,1) x [-j,3]) and

D
h|
let dj be a metric on Dj generating the Skorohod topology there. To
define a dj consider the class AO (respectively Aj) of all strictly
increasing continuous mappings on [0,1] onto [0,1]1 (respectively on

J 0
write l(t,u)] = mnx{]tl,lul} and A(t,u) = (Ao(t),xj(u)). Thea we may

f-j,3) onto [-j,j1). Let A = (AO,A Y ¢ A, X Aj. For any (t,u) € [0,1] x[-j,j]

define dj by
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d.(x,y) = inf{e > 0 : for some A = (Ao,Aj) e A x A, with

J 3
Roll < &5 [R5l < & sup x(t,u) - y(a(g,u)) | s €}
(t,u)el0,11x[~3,5]
A Qv - A o’
where “AOM = supllog a— | and ”A || is similarly defined. Then the

t#s

metric d in D given by

iy ; )3 d, (x,y)
X,y) =
j=1 1+ dj(x,y)

converts D into a complete separable metric space.

The sample paths of A lie in D and those of A 1lie in the subset

n,t
€(f0,1] x R) of D, consisting of all continuous functions on {0,1] x R. h
To verify tightness of the process An T it suffices to show, for each j > 1,

’

n
and arbitrary € > 0
lim . lim sup P {sup[llogx . (u,) - lngx a2 (u)]
61,62+0 e % n,kn(tl,eo) 1 n,kn(tz,eo) 2
o fup =yl < 80, et < 8, fuy| <3, t e [0,111 > €} =

1
To show this we follow (3.12) and write

'(9 )
Qo )

g JSRIL

logl\n’k (t:0 )(u) = u(n )wn’T (t;eo)
n 0 n

Q' (9 ) 2
Q(O ) )y (1 + x ) (1 - xn)

qa? (n” k (&5 6 (Geg

-1
(n kn(t’ eo))ngn’

*
where en, X, and g, are defined in (3.13) - (3.16). The remainder of

the analysis follows the usual conventional manipulations. Note that the

tightness of Voo in D[0,1] which follows from Theorem 1 will be used.
b4 n .

(b) The fundamental assumptions on the sequence {Tn} are that they be

adapted to the o-fields {Bn W 1 £k s n} and satisfy n_ltn > a ¢ {0,1] i
, !
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in probability. Theorem 3 imposes a condition on the rate of this convergence.
For example in the simplest situation where sampling is terminated at time

t > 0 we may take L nFn(t), where Fn(t) is the empirical d.f. of

T
X yse-esX . In this case the inequality P [ |- -a) 28] < AZG“, holds

n,n 90
for some constants A >0 and 0 < § <1 with a = Fe(t). Gardiner and Sen
(1978) have considered a wider class of stopping variables L that are

expressible in terms of certain linear combinations of functions of the

observables X sesesX which is appropriate to this context.
n,l n,n

(¢) The restriction imposed in this paper to classes of distributions
satisfying (2.3) enables us to work in terms of independent variables even

though the observables X are dependent. However, if this con-

xn,l""’ n,n

dition does not hold results paralleling those given here can be obtained
though the analysis is essentially different and necessarily more involved
as one has lost the enormous technical facility of working with independent
random variables. 1In particular the transformation (3.3) cannot be made and

Jn . (0) of (3.8) takes on a far more complicated form even though as n » =
''n

n-lJn . (6) converges to a limit. Finally, we remark that randomly stopped
’
n

likelihood ratio processes can be analysed for general dependent triangular

arrays {X 1 sk < kn’ n > 1) with a different choice of local coordi-

n, k :

nates 0 .
n
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